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Localization of shocks in driven diffusive systems without particle number conservation
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We study the formation of localized shocks in one-dimensional driven diffusive systems with spatially
homogeneous creation and annihilation of parti¢lesigmuir kinetics. We show how to obtain hydrodynamic
equations that describe the density profile in systems with uncorrelated steady state as well as in those
exhibiting correlations. As a special example of the latter case, the Katz-Lebowitz-Spohn model is considered.
The existence of a localized double density shock is demonstrated in one-dimensional driven diffusive systems.
This corresponds to phase separation into regimes of three distinct densities, separated by localized domain
walls. Our analytical approach is supported by Monte Carlo simulations.
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I. INTRODUCTION local particle creation at empty sites with ratg and anni-
hilation with ratewy (see Fig. 1[8,13]. In the thermody-
One-dimensional driven diffusive systems proved to be anamic limit L—o, there are three regimes to be distin-
rewarding research topic in the past yept$ They were guished. Ifw, and wy are of an order larger thanll/ the
shown to exhibit boundary induced phase transitipp  steady state of the system will be that of Langmuir kinetics,
spontaneous symmetry breakif§,4] and phase separation i-€., there will be a uniform density & =w,/(wa+ wg) in
[5,6]. Recently, the case of systems without particle conserthe system. In case @, andwy being of smaller order than
vation in the bulk attracted attention. In RET], the effect of ~ 1/L, the local kinetics is negligible and the system will be-
a single detachment site in the bulk of an asymmetric simpléave as the TASEP. The case of the local rates being of the
exclusion proces$ASEP) was studied. In Refd8,13], the order of 1L is the most interesting one, and will be investi-
interplay of the simplest one-dimensional driven model, thedated further on. Writing
totally asymmetric exclusion proces3ASEP with local
abso)r/ptior):/desorption kinetics gf sinéle part?:les acting at all wa={all,  0g=Qq/L, (1)
sites, termed “Langmuir_ kinetics”(LK) was considered. the phase diagram can be formulated in term€gf Qg
These models were inspired by the dynamics of motor pro. ,andp. . In Ref.[8], it was shown that fof), and Q

teins[22], which move along cytoskeletal filaments in a cer- fixed, the phase diagram as a functiorpafandp , does not

tain preferred direction while detachment and attachment @81y exhibit the low-density and high-density phases known
also occur between the cytoplasm and the filament, and, in

) i X L _ flom the TASEP, but also a high-low coexistence phase. In
very different setting, by dynamics of limit orders in a StOthhis phase, the shock does not move in the system but its
exchange market. Being an equilibrium process, LK is we

I citinn : :
) . osition is a function of the ratgs_ and see Fig.
understood, while the combined process of TASEP and LKp on | Hnetl ps ( 9. 2

h d th f f a localized shock in the dens: Parmeggianget al. presented not only Monte Carlo simu-
showed the new feature of a localized shock In the enSIt)l'ations, but derived also a mean field equation for the density
profile of the stationary stafe].

fil hich h t inci ith the simulati
The TASEP is defined on a one-dimensional lattice of :;iziro lle which was shown to coincide wi € simufation

L Each si ither b ied b o rofiles. We argue here that the mean field approximation
- Each site can either be empty or occupied by one particle,;nnot he used in general. The coincidence with the Monte

In the bulk, particles can hop from sitéo sitei +1 with unit. =54 (\vC) simulations in Ref[8] is due to lack of correla-
rate, provided the target site is empty. At site 1, particles cagyqns in true steady state of the TASEP. We claim that the
enter the lattice from a reservoir with densjiy , provided  gasionary density profile can be derived, in general, using a
the site Is empty. They can leave the system f_rom lsnl_m{o hydrodynamic equation and taking correlations into account
a reservoir of density , with rate 1-p, . Thus in the inte- j, caqe of the TASEP, this equation is equal to that obtained
rior of the lattice, the particle number is a conserved quantity,ith a mean field approaghFor the Katz-Lebowitz-Spohn
The phase diagram and steady states of the TASEP as a fungy sy model, which is a generic model of interacting driven

tion of the boundary rates are known exad®-11. Fur-  if,gjve systemg14,15, we show that this hydrodynamic

f[hermore_:, a theory of boundary indl,!ced phase tra_nsi_tions €X%quation correctly describes the density profiles on a quanti-
ists, which explains the phase diagram quantitatively

; . Native level, while a mean field approach would fail to repro-
terms of the dynamics of shock&2]. In the stationary state,

these shocks exist as an upward density shock along the co- A :

existence line between the high- and the low-density phases, \“A od y i }v

i.e., they connect a region with low density to the left of the - M

shock position with a high-density region to its right. The 01101001010111101010001

shock performs a symmetric random walk between the

boundaries of the system. FIG. 1. Possible processes and their rates in the model of the

One may equip the system with the additional feature ofASEP with Langmuir kinetics.
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T - T - T - T - ' the hydrodynamic descriptiofafter time rescaling— et) is
09 — MC adequate for describing the full dynamics. For physical in-
-- Hydrodynamic equation sight in the formation of shocks, one needs other tools which
are discussed below.

Rewriting Eq.(2) by usingdp(x,t)=0 in the stationary
state, and,j = dj/dp- dpl ox yields for the stationary density
profile p(x):
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Here,v.=djldp is the collective velocity, i.e., the drift ve-
locity of the center of mass of a local density perturbation on
a homogeneous stationary background with dengitgfor
system with the Langmuir kinetics switched )ofL,12]. The

FIG. 2. Plot of an average density of particjesersus rescaled stationary dens.i'gy profile has to satisfy B) as well as t_he
coordinatex (site number/l of a localized density shock in the boundary conditionp(0)=p_ andp(1)=p, . ASEq.(4) is
ASEP with Langmuir kinetics. Parameters gre=0.2, p, =0.6,  Of first order there will be, in general, no smooth solution
0,=0.3, andQ,=0.1. We show the results of both Monte Carlo fitting both boundary conditions. In the original lattice

simulations forL = 1000 and the mean field approach. model, this discrepancy is resolved by th? appearance of
shocks and/or boundary layers. To regularize the problem,

duce even the basic qualitative features of the system, e.gdne can add to Eq(2) and correspondingly to Eq4) a

0.1+
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phase separation into three distinct density regimes. vanishing viscosity term
2
Il. HYDRODYNAMIC EQUATION dp(x) 3°p(X)
© o) e = L) ©

In the following, we are interested in the—oo limit in
which we rescale lattice spacing=1/L—0 and timet ] )
—t,anice/L (Eulerian scalingto get the continuoughydrody- where v>0 is of the_ order of 1/. This term makes the
namig limit of the model. In this framework{), 4 are the hydrodynaml_c equ'atlon of second order', ' and ensures a
attachment/detachment rates per unit length. We claim thatmooth solution fitting both boundary conditions. The shock
the hydrodynamic equation describing the time dependendg@s then a width of the order ofLi{see Ref[8]), i.e., in the
of the local density(x) for a general driven diffusive sys- thermodynamlc_llmlt the resca!ed solution becomes.dlscon—
tem with Langmuir kinetics takes the form tinuous. We claim that Eq5) gives the same result in the

L—oo limit as the Monte Carlo simulations, therefore it can
@) be used as a tool to compute the stationary density profile.

The main difference between E®) and the MC simulations

is that the former does not take fluctuations into account,
wherej(p) is theexactcurrent in a driven diffusive system which leads to a shock width of the order ot Liwhile in a
with homogeneous density without LK and L(p) is the  MC simulations after averaging it is of the order of/I/ due
source term descrllbmg the Langmwr kinetics. Here, we contg the fluctuation of the shock position.
sider only that choice of(p) which corresponds to the pro-  The stationary density profile for a givgtp) and param-
cess depicted in Fig. 1: etersQ,, Q4, p_, andp, can be derived from the flow

_ field of the differential equatiori4) by using the rules for-
L£(p)=0a(1=p(x,1) = Qgp(X,1). ©®)  mulated and explained below.

Other choices of(p), which might, e.g., describe the local (& In the interior of the lattice, the stationary density
annihilation of particle pairs, are to be discussed in a forthProfile either follows a line of the flow field of the differen-
coming publicatior{16]. tial equation(4) or makes a jump. Jumps can only occur

As is usually done in the rigorous derivation of the hydro-Petween densities yielding the same current, ite,current
dynamic limit of conservative systeni&7], our nonconser- S continuous in the interior of the lattice _ -
vative Eq.(2) implicitly assumes that the system is locally (D) Let p’. be defined as limiting left and right densities
stationary because the exact form of the stationary flux igVith the boundary layers cut away:
used. We argue that this assumption is justified since the
nonconservative part of the dynamics of the system at mac- p_= lim p(x), p\= lim p(x),
roscopic scale is so slow that locally the system reaches sta- x—+0 x—1-0
tionarity with respect to the conservative part of the dynam-
ics. Any finite perturbation caused by the nonconservativevhere p(x) is the stationary profile in the hydrodynamic
dynamics would travel a macroscopic distance and henclmit. The boundary layer at=0 ( i.e., if p_#p’) has to
dissipate before interacting with another perturbation. Hencsatisfy the following condition:

Jd
ZPt &J’(P)=£(P),
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if p_<p’” then j(p)>j(p_) forany pe(p_,p"),
(6)
if p_>p’ then j(p)<j(p.) forany pe(p’ ,p_).

@)

The condition for the stability of the boundary layer at
=1 (if there i9 is similar:

then j(p’)<j(p) forany pe(p’ ,p),
8

if pl<py

then j(p%)>j(p) forany pE(p+,p’+)(-)
9

it p\i>p,

(c) Shocks between a densipy to the left of the shock
and p, to the right of the shock are stable only if they are
stable in the absence of Langmuir kinetjds18].

Following are a few remarks pertaining to the rules pre-

sented above.

(i) Although LK does not conserve locally the number of
particles, Eq(2) with the vanishing viscosity addg®) can
be rewritten formally in the form

d~

704D +J(x0)=0,

ot

~ . x ap
0= [ Loiax-vE-m0, 10
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corresponding to the local density leyglthus rendering the
same stability conditions for a shock as for the diffusive
system without LK.

Condition (c) is easy to check geometrically through the
current-density relation. An upwartdownward shock is
stable if the straight line connecting the poifys,j(p)) and
(p;.,j(p,)) stays below(above the j(p) curve[18,21]. Be-
cause of criteriorfa) these lines are always horizontal in this
case, which gives zero mean velocityut not localization
for the shock in absence of Langmuir kinetics.

(iv) In the cases we have conside(@SEP, KLS mode),
rules(a)—(c) define a unique stable solutigsee the Appen-
dix), and we believe that this is true also in general case, i.e.,
for arbitraryj(p) dependence and for the given choi8g of
Langmuir kinetics.

In the following, we apply the general theory to specific
models.

Ill. REVISITING THE ASEP WITH LANGMUIR KINETICS

Using the differential equatiof4) and the rules given
above, we reconsider the ASEP with Langmuir kinetics
[8,13]. Here, the current-density relation is given pip)
=p(1—p), which yieldsv (p)=1—2p. Thus Eq.(4) be-
comes

(1-2p(x))dxp(X)= Qo= (Qa+ Qg)p(x), (12

which is identical with the mean field equation in R] in

the thermodynamic limit. We would like to stress that this
coincidence is caused by the fact that the mean field current-
density relation for the TASEP is exact. As is demonstrated

whereF(t) is some time-dependent function. Let us supposeelow, Eq.(4) also holds when this is not the case, i.e., for

that there is a shock at the positi¥lg connecting the densi-
tiesp; andp, . The mass transfer across the shock is

1%
at Xo—

Xn+0 - -
’ POuAX=T (X 01) =T (X6~ 01 =] (p) =i (p1),

(11)

the one-dimensional KLS model.

Due to rule(a) as stated abovéontinuity of the current
in the interior of the lattick shocks in the interior can only
occur in the case whei@=1—p,, asj(p) is symmetric to
p=1/2. Rule(c) (stability of the shockfurthermore requires
thatp,>p, . These observations coincide with the findings of
Ref. [8].

since the Langmuir term and the viscosity term change only We also applied our rules tohop exclusion modelgl9)]
infinitesimally across the shock. In the stationary state, théWith LK added, which are a generalization of the TASEP

right hand side of Eq(11) vanishes which explains rul@).
(ii) Rule(b) is due to the fact that in the boundary layer of
vanishing lengthsl —0, the LK term in Eq.(10) can be

with stationary product measures and asymmetric current-
density relations. Due to this fact shocks appear, which are
nonsymmetric with respect fo=1/2. MC simulations are in

neglected. Consequently, for the stationary current at th&ll accord with our prediction$20].

boundaries, we havg(x)=j(p(x))— v(dp/dx)=J, which
yields the known maximization/minimization principle
[1,21] and is equivalent to rulé). Indeed at the left bound-
ary, J=j(p_) [see Eq.(6) for notationg, and if, e.g.,p_
<p', then @p/dx)>0. Consequently, we obtain(p_)
=J+v(dpldx)>J, which is exactly Eq.6). Analogously
one obtains Eqg.7)—(9).

(i) Rule (c) is explained by the marginal role the
Langmuir kinetics plays locally in both space and time.
The first, LK is very slow locally for largd [see Eq.(1)],
and the second, it acts “orthogonally” on the particle distri-

bution, not affecting directly the particle motion. Hence, the

local perturbations will still spread with the velocity

IV. KLS MODEL WITH LANGMUIR KINETICS

A much studied one-dimensional driven diffusive system
with interactions between the particles is the following vari-
ant of the KLS mode[6,18,21. In the interior, particles at
sitei move to site + 1, provided it is empty, with a rate that
depends on the state of sites1 andi+2:

0100— 0010 with rate 1 6,
1100—-1010 withrate M e,

0101—-0011 withrate I,
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FIG. 3. Current-density relation for the one-dimensional KLS  FIG. 4. Density of particlep versus rescaled coordinatesite
model for variouse. number/l) in a localized downward shock in the KLS model with
Langmuir kinetics. Parameters ape =0.64, p, =0.35, and(},
1101-1011 withrate =& =4=0.05. We show the results of both hydrodynamic equation

and Monte Carlo simulation fok =1000. The smoothness of the

) ) ) ] MC result is due to the fluctuation of the shock positjd6).
At site 1, particles can enter the lattice provided the target

site is empty. The rate depends on the state of site 2. Simi- , . o
larly, particles can leave the system at sitewith a rate rates. Indeed, in the KLS model with Langmuir kinetics for

depending on the state of site-1. The boundaries mimic Certain values of the boundary densities andp.., which
the action of reservoirs with densitigs andp, . Forp_  Strongly depend on the kinetic raték, and(),, one gets a
=p. , the stationary state is that of an one-dimensional Isin&table downward shock according to rules—(c). We give

model with boundary fields. The current-density relation carf €xample for this case in Fig.(dlso refer to Fig. 5 _

be calculated exactly using transfer matrix technidué$. It One can see that employing the general theory described
turns out that for strong enough repulsion between the pa@P0Vve yields a stationary profile with a localized downward
ticles (€=0.9), a current-density relation with two maxima shock, which coincides with the MC results up to finite size

arises(see Fig. 3 The parameted determines the skewness effects, while a simple mean field approach would fail as it
of j(p) with respect to the vertical linp=1/2. For §=0 would not be able to capture the difference between the KLS
the system has particle-hole symmetry resulting(ip) be- ~ Model withe>0 and the TASERKLS with €=0).

ing symmetric with respect to 1/2. For simplicity, we con- _

sider this case in the rest of the paper. B. Localized double shocks

The phase diagram of this family of models with strong et ! , be defined as the inflection points of the current-
particle repulsion is known to exhibit seven different phasesdensity relation 6L<p}). As is known from the studies of
among them are two maximal-current phases and Onge k| 5 mode[18,21, if we start an infinite system from a

minimal-current phase. The phase diagram is determined b R . ) . ~
the interplay of diffusion, branching, and coalescence o teplike initial density profile witfp_ < (ps,p1) on the left

shocks[21].

When equipping these models with Langmuir kinetics, %2
one expects that a very rich phase diagram with many more
than the original seven phases will appear. We will not at-
tempt to give this full phase diagram here, but insteadgs|-
present two distinct features, which cannot be observed ir
systems without a concave region in the current-density re- |
lation: localized downward shocks and double shocks.

—— current-density relation
= Profile as figure 4

0.1

A. Localized downward shocks

In the regime where the current-density relation of the ;s
KLS model exhibits two maxima at densitiegg§ and p3 ,
wherep} <p3 and a minimum ap=1/2 (at §=0), there is
a region where downward shocks are stable according tc L L
Refs.[18,2]] [and rule(c)]. These are characterized by % P, P, P P.
€(0.5p3) and p, e (p7,0.5). This suggests that localized  FIG. 5. Path in the current-density relation for the profile shown
downwards shocks may appear when introducing the kinetia Fig. 4.
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FIG. 7. Path in the current-density relation for the profile shown

FIG. 6. Density of particlep versus rescaled coordinatdsite in Fig. 6

number/l) in a localized double shock in the KLS model with

Langmuir kinetics. Parameters age_=0.23, p,=0.745, Q . . . .
—0.03, and,=0.01. We show the results of bgth hydrodyn;mic useful discussions. A.R. acknowledges financial support by

equation and Monte Carlo simulation for=1000. The smoothness Deutsche Forschungsgemeinschaft. A.B.K. acknowledges

of the MC result is due to the fluctuation of the shock posifios]. (€ Support of the Camille and Henry Dreyfus New Faculty
Awards Program{under Grant No. NF-00-056nd the hos-

andp, e (p5,p,) on the right, we get a time-dependent so- pitality of Forschungszentrum Julich.
lution having two shocks. One of these shocks has negative
mean velocity, while the other has positive, and in the middle  APPENDIX: DOUBLE SHOCK DENSITY PROFILE

there is an expanding region wigh=1/2 (for §=0) which FROM RULES (A)—(C)
corresponds to the minimal-current phase in a system with ) )
open boundariegl8,21]. Here, we demonstrate how one determines the stationary

This leads us to the conjecture that introducing the kinetiglensity profile using rulesa)—(c) from Sec. IIl. As an ex-
rates for certain values qf_,p, ,Q,, andQ,, one may ample, we take the parameters that yield a double
achieve a stable double shock structure. In Figsée also
Fig. 7), we present an example for such a case. Application ! T
of rules(a)—(c), which is presented in detalil in the Appendix,
yields the same double shock structure as the MC simula:
tions up to finite size effects. Note, that a simple mean field
approach could not predict a double shock.

V. CONCLUSIONS

In this work, we present a hydrodynamic equation which,
together with some rules treating the discontinuities, cor-
rectly describes the stationary states of one-dimensionaP
driven diffusive systems with Langmuir kinetics and open
boundaries. It captures both systems without correlations in ¢
steady staté¢ as the TASEP and thehop exclusion modeJs
and systems with correlations as the KLS model. For the
latter, the two phenomena of a stationary localized down-
ward shock and a localized double shdckrresponding to
phase separation to three distinct regjongre presented,
which a mean field approach would not reproduce. The exac
current of driven diffusive systems without LK enters the
hydrodynamic description since the bulk has sufficient time
to relax between subsequent annihilation/creation events. At
interesting paradoxical feature of these phenomena is that the
fluctuating shocks get localized due to extra nofs&),
which is highly unexpected.

FIG. 8. The flow field of the hydrodynamic equation in the KLS
model with Langmuir kinetics. Parameters afe=0,e=0.90),
=0.03, and(24=0.01. The thick lines show the stationary density
profile for p_=0.23p, =0.745 given by rulesa)—(c). The dotted
lines arep=p,~0.248 21,p=p,~0.751 78(see Sec. IV B for no-

We wish to thank the authors of R¢8] for communicat- tationg. Axes:x is a rescaled coordinatsite number/l, p(x) is an
ing their results prior to publication and M. Salerno for average density of particles at point

ACKNOWLEDGMENTS
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(localized shock structure in the KLS modelp (=0.23,
p+=0.745,Q0,=0.03, and4=0.01). The KLS-model pa-
rameters areS=0,e=0.9 (see Sec. V.

First assume that there is a boundary layex=a0. Ac-
cording to rule(b), it is stable only ifp”. >1—p_=0.77. If

PHYSICAL REVIEW E 67, 066117 (2003

to make a jump.

Note that this trajectory crosses the lipep; at x=x;.

Suppose that the jump takes place before<ax;. In this
case, according to rulés), it would jump overp,=1—p;

this is the case then in the bulk there is no allowed jumpVhich would resultin a boundary layerat 1, which is not

since these trajectories of the flow fieldee Fig. 8 stay
always abovep=0.75[rules (a) and (c)], which yieldsp’,

allowed. If the jump takes place at>x,, then pi <p,

< 0.5 and since from this region there is no allowed jump it

>0.75. But then the boundary layerat 1 does not satisfy would end up apy <p’. <0.5, resulting again in an unstable
rule (b). This contradiction shows that there is no boundaryboundary layer on the right side. This shows that the jump is
layer atx=0. One can use the same argument to show thdbcated atx=x,, and from here the density profile follows

there is no boundary layer at=1 either.

the trajectory that starts at=x, with the valuep=0.5+0.

Now one can see that the stationary density profile close One can easily see that we need another jump to connect
to the left boundary follows the line of the flow field for this trajectory with the one that endsat1 with p=p .
which p(x=0)=p_=0.23. Since there is no boundary layer Applying rule (a) (continuity of the current we can get the
at the right end, it is clear that somewhere in the bulk it hagoint x, where the second jump is located.
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